Noncommutative differential geometry based on ε-derivations

Eric Cagnache

Laboratoire de Physique Théorique, CNRS, Université Paris-Sud 11
0804.3061 [hep-th], 0811.3567 [math-ph], 0811.3850 [math-ph]

Journ. N. C. Geom., SIGMA, CMP to appear
coll. with A. de Goursac,
T. Masson, J.-C. Wallet

Integrable Systems and Quantum Symmetries, Prague, 18-20 June 2009

Content

(1) Noncommutative geometry based on ϵ-derivations

- Commutation factor and ϵ-algebras
- Differential calculus based on ϵ-derivations
- ϵ-connection and curvature
(2) Examples

(3) A simple application

- $A \mathbb{Z}_{2}$-graded algebra constructed from Moyal space
- Connection and curvature
- Gauge action

Noncommutative geometry based on ϵ-derivations

(1) Noncommutative geometry based on ϵ-derivations

- Commutation factor and ϵ-algebras
- Differential calculus based on ϵ-derivations
- ϵ-connection and curvature
(2) Examples
(3) A simple application

Commutation factor

- Let \mathbb{K} a field and Γ an abelian group.

Definition 1 (Commutation factor)

A commutation factor on Γ over \mathbb{K} is a map $\varepsilon: \Gamma \times \Gamma \rightarrow \mathbb{K}^{*}$ satisfying, $\forall i, j, k \in \Gamma$ $\varepsilon(i, j) \varepsilon(j, i)=1_{\mathbb{K}}, \varepsilon(i, j+k)=\varepsilon(i, j) \varepsilon(i, k), \varepsilon(i+j, k)=\varepsilon(i, k) \varepsilon(j, k)$

- This definition implies that $\varepsilon(i, 0)=\varepsilon(0, i)=1_{\mathbb{K}}, \varepsilon(i, i) \in\left\{1_{\mathbb{K}},-1_{\mathbb{K}}\right\}$ and $\varepsilon(j, i)=\varepsilon(i,-j)=\varepsilon(i, j)^{-1}$
- Example : $\Gamma=\mathbb{Z}, \varepsilon(p, q)=1, \varepsilon(p, q)=(-1)^{p q}$

Commutation factor

- Let \mathbb{K} a field and Γ an abelian group.

Definition 1 (Commutation factor)

A commutation factor on Γ over \mathbb{K} is a map $\varepsilon: \Gamma \times \Gamma \rightarrow \mathbb{K}^{*}$ satisfying, $\forall i, j, k \in \Gamma$ $\varepsilon(i, j) \varepsilon(j, i)=1_{\mathbb{K}}, \varepsilon(i, j+k)=\varepsilon(i, j) \varepsilon(i, k), \varepsilon(i+j, k)=\varepsilon(i, k) \varepsilon(j, k)$

- This definition implies that $\varepsilon(i, 0)=\varepsilon(0, i)=1_{\mathbb{K}}, \varepsilon(i, i) \in\left\{1_{\mathbb{K}},-1_{\mathbb{K}}\right\}$ and $\varepsilon(j, i)=\varepsilon(i,-j)=\varepsilon(i, j)^{-1}$
- Example : $\Gamma=\mathbb{Z}, \varepsilon(p, q)=1, \varepsilon(p, q)=(-1)^{p q}$

Proposition 2

Let ε_{1} and ε_{2} be two commutation factors respectively on the abelian groups Γ_{1} and Γ_{2}, over the same field \mathbb{K}. Then the relation

$$
\varepsilon\left(\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right)=\varepsilon_{1}\left(i_{1}, j_{1}\right) \varepsilon_{2}\left(i_{2}, j_{2}\right)
$$

$\forall i_{1}, j_{1} \in \Gamma_{1}$ and $\forall i_{2}, j_{2} \in \Gamma_{2}$, defines a commutation factor on the abelian group $\Gamma_{1} \times \Gamma_{2}$

ϵ-algebras

- Recall (Scheunert 1979, ...) : An ε-Lie algebra is defined as a couple $\left(\mathfrak{g}^{\bullet},[-,-]_{\varepsilon}\right)$ where \mathfrak{g}^{\bullet} is a Γ-graded vector space, ε a commutation factor on Γ and $[-,-]_{\varepsilon}: \mathfrak{g}^{\bullet} \times \mathfrak{g}^{\bullet} \rightarrow \mathfrak{g}^{\bullet}$ a bilinear product satisfying $[a, b]_{\varepsilon}=-\varepsilon(|a|,|b|)[b, a]_{\varepsilon}, \quad\left[a,[b, c]_{\varepsilon}\right]_{\varepsilon}=\left[[a, b]_{\varepsilon}, c\right]_{\varepsilon}+\varepsilon(|a|,|b|)\left[b,[a, c]_{\varepsilon}\right]_{\varepsilon}$
- If $[a, b]_{\varepsilon}=0, \forall a, b \in \mathfrak{g}^{\bullet}, \mathfrak{g}^{\bullet}$ is called an abelian ε-Lie algebra.

ϵ-algebras

- Recall (Scheunert 1979, ...) : An ε-Lie algebra is defined as a couple $\left(\mathfrak{g}^{\bullet},[-,-]_{\varepsilon}\right)$ where \mathfrak{g}^{\bullet} is a Γ-graded vector space, ε a commutation factor on Γ and $[-,-]_{\varepsilon}: \mathfrak{g}^{\bullet} \times \mathfrak{g}^{\bullet} \rightarrow \mathfrak{g}^{\bullet}$ a bilinear product satisfying $[a, b]_{\varepsilon}=-\varepsilon(|a|,|b|)[b, a]_{\varepsilon}, \quad\left[a,[b, c]_{\varepsilon}\right]_{\varepsilon}=\left[[a, b]_{\varepsilon}, c\right]_{\varepsilon}+\varepsilon(|a|,|b|)\left[b,[a, c]_{\varepsilon}\right]_{\varepsilon}$
- If $[a, b]_{\varepsilon}=0, \forall a, b \in \mathfrak{g}^{\bullet}, \mathfrak{g}^{\bullet}$ is called an abelian ε-Lie algebra.

Definition 3 (ε-graded algebra)

Let $\mathbf{A}^{\boldsymbol{\bullet}}$ be an associative unital Γ-graded \mathbb{K}-algebra and a commutation factor ε on Γ, then ($\mathbf{A}^{\bullet}, \varepsilon$) will be called an ε-graded (associative) algebra.

ϵ-algebras

- Recall (Scheunert 1979, ...) : An ε-Lie algebra is defined as a couple $\left(\mathfrak{g}^{\bullet},[-,-]_{\varepsilon}\right)$ where \mathfrak{g}^{\bullet} is a Γ-graded vector space, ε a commutation factor on Γ and $[-,-]_{\varepsilon}: \mathfrak{g}^{\bullet} \times \mathfrak{g}^{\bullet} \rightarrow \mathfrak{g}^{\bullet}$ a bilinear product satisfying $[a, b]_{\varepsilon}=-\varepsilon(|a|,|b|)[b, a]_{\varepsilon}, \quad\left[a,[b, c]_{\varepsilon}\right]_{\varepsilon}=\left[[a, b]_{\varepsilon}, c\right]_{\varepsilon}+\varepsilon(|a|,|b|)\left[b,[a, c]_{\varepsilon}\right]_{\varepsilon}$
- If $[a, b]_{\varepsilon}=0, \forall a, b \in \mathfrak{g}^{\bullet}, \mathfrak{g}^{\bullet}$ is called an abelian ε-Lie algebra.

Definition 3 (ε-graded algebra)

Let $\mathbf{A}^{\boldsymbol{\bullet}}$ be an associative unital Γ-graded \mathbb{K}-algebra and a commutation factor ε on Γ, then ($\mathbf{A}^{\bullet}, \varepsilon$) will be called an ε-graded (associative) algebra.

- $\left(\mathbf{A}^{\bullet},[-,-]_{\varepsilon}\right)$ is an ε-Lie algebra denoted by $\mathbf{A}_{\text {Lie }, \varepsilon}^{\bullet}$ where $[a, b]_{\varepsilon}=a \cdot b-\varepsilon(|a|,|b|) b \cdot a$

ϵ-algebras

- Recall (Scheunert 1979, ...) : An ε-Lie algebra is defined as a couple $\left(\mathfrak{g}^{\bullet},[-,-]_{\varepsilon}\right)$ where \mathfrak{g}^{\bullet} is a Γ-graded vector space, ε a commutation factor on Γ and $[-,-]_{\varepsilon}: \mathfrak{g}^{\bullet} \times \mathfrak{g}^{\bullet} \rightarrow \mathfrak{g}^{\bullet}$ a bilinear product satisfying $[a, b]_{\varepsilon}=-\varepsilon(|a|,|b|)[b, a]_{\varepsilon}, \quad\left[a,[b, c]_{\varepsilon}\right]_{\varepsilon}=\left[[a, b]_{\varepsilon}, c\right]_{\varepsilon}+\varepsilon(|a|,|b|)\left[b,[a, c]_{\varepsilon}\right]_{\varepsilon}$
- If $[a, b]_{\varepsilon}=0, \forall a, b \in \mathfrak{g}^{\bullet}, \mathfrak{g}^{\bullet}$ is called an abelian ε-Lie algebra.

Definition 3 (ε-graded algebra)

Let $\mathbf{A}^{\boldsymbol{\bullet}}$ be an associative unital Γ-graded \mathbb{K}-algebra and a commutation factor ε on Γ, then ($\mathbf{A}^{\bullet}, \varepsilon$) will be called an ε-graded (associative) algebra.

- $\left(\mathbf{A}^{\bullet},[-,-]_{\varepsilon}\right)$ is an ε-Lie algebra denoted by $\mathbf{A}_{\text {Lie }, \varepsilon}^{\bullet}$ where $[a, b]_{\varepsilon}=a \cdot b-\varepsilon(|a|,|b|) b \cdot a$
- The ε-center of $\mathbf{A}_{\varepsilon}^{\bullet}$ is the ε-graded commutative algebra $\mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A})=\left\{a \in \mathbf{A}^{\bullet}, \forall b \in \mathbf{A}^{\bullet}[a, b]_{\varepsilon}=0\right\}$

ϵ-algebras

- Recall (Scheunert 1979, ...) : An ε-Lie algebra is defined as a couple $\left(\mathfrak{g}^{\bullet},[-,-]_{\varepsilon}\right)$ where \mathfrak{g}^{\bullet} is a Γ-graded vector space, ε a commutation factor on Γ and $[-,-]_{\varepsilon}: \mathfrak{g}^{\bullet} \times \mathfrak{g}^{\bullet} \rightarrow \mathfrak{g}^{\bullet}$ a bilinear product satisfying $[a, b]_{\varepsilon}=-\varepsilon(|a|,|b|)[b, a]_{\varepsilon}, \quad\left[a,[b, c]_{\varepsilon}\right]_{\varepsilon}=\left[[a, b]_{\varepsilon}, c\right]_{\varepsilon}+\varepsilon(|a|,|b|)\left[b,[a, c]_{\varepsilon}\right]_{\varepsilon}$
- If $[a, b]_{\varepsilon}=0, \forall a, b \in \mathfrak{g}^{\bullet}, \mathfrak{g}^{\bullet}$ is called an abelian ε-Lie algebra.

Definition 3 (ε-graded algebra)

Let $\mathbf{A}^{\boldsymbol{\bullet}}$ be an associative unital Γ-graded \mathbb{K}-algebra and a commutation factor ε on Γ, then ($\mathbf{A}^{\bullet}, \varepsilon$) will be called an ε-graded (associative) algebra.

- $\left(\mathbf{A}^{\bullet},[-,-]_{\varepsilon}\right)$ is an ε-Lie algebra denoted by $\mathbf{A}_{\text {Lie }, \varepsilon}^{\bullet}$ where $[a, b]_{\varepsilon}=a \cdot b-\varepsilon(|a|,|b|) b \cdot a$
- The ε-center of $\mathbf{A}_{\varepsilon}^{\bullet}$ is the ε-graded commutative algebra $\mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A})=\left\{a \in \mathbf{A}^{\bullet}, \forall b \in \mathbf{A}^{\bullet}[a, b]_{\varepsilon}=0\right\}$
- $\mathrm{A} \Gamma$-graded module $\mathbf{M}^{\boldsymbol{\bullet}}$ on $\mathbf{A}^{\boldsymbol{\bullet}}$ is a Γ-graded vector space and a module on \mathbf{A}^{\bullet} such that $\mathbf{M}^{i} \mathbf{A}^{j} \subset \mathbf{M}^{i+j}$ (for right modules) $\forall i, j \in \Gamma$

ϵ-derivations

Definition 4 (ε-derivation)

A linear map $\mathfrak{X}: \mathbf{A}^{\boldsymbol{\bullet}} \rightarrow \mathbf{A}^{\boldsymbol{\bullet}}$ is an homogeneous ε-derivation if, $\forall a, b \in \mathbf{A}^{\boldsymbol{\bullet}}$, $\mathfrak{X}(a \cdot b)=\mathfrak{X}(a) \cdot b+\varepsilon(|\mathfrak{X}|,|a|) a \cdot \mathfrak{X}(b)$ where a are homogeneous.
We note $\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ the Γ-graded space of ε-derivation

ϵ-derivations

Definition 4 (ε-derivation)

A linear map $\mathfrak{X}: \mathbf{A}^{\bullet} \rightarrow \mathbf{A}^{\bullet}$ is an homogeneous ε-derivation if, $\forall a, b \in \mathbf{A}^{\bullet}$, $\mathfrak{X}(a \cdot b)=\mathfrak{X}(a) \cdot b+\varepsilon(|\mathfrak{X}|,|a|) a \cdot \mathfrak{X}(b)$ where a are homogeneous. We note $\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ the Γ-graded space of ε-derivation

- The space $\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ is an ε-Lie algebra and a $\mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A})$-module
- An inner ε-derivation on \mathbf{A}^{\bullet} is an ε-derivation \mathfrak{X} :

$$
\exists a \in \mathbf{A}^{\bullet}, \mathfrak{X}(b)=\operatorname{ad}_{a}(b)=[a, b]_{\varepsilon}
$$

We note $\operatorname{Int}_{\varepsilon}^{\bullet}(\mathbf{A})=\left\{\operatorname{ad}_{a}, a \in \mathbf{A}^{\bullet}\right\}$ the space of inner ε-derivations on \mathbf{A}^{\bullet} It is an ε-Lie ideal and a $\mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A})$-module.

ϵ-derivations

Definition 4 (ε-derivation)

A linear map $\mathfrak{X}: \mathbf{A}^{\bullet} \rightarrow \mathbf{A}^{\bullet}$ is an homogeneous ε-derivation if, $\forall a, b \in \mathbf{A}^{\bullet}$, $\mathfrak{X}(a \cdot b)=\mathfrak{X}(a) \cdot b+\varepsilon(|\mathfrak{X}|,|a|) a \cdot \mathfrak{X}(b)$ where a are homogeneous. We note $\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ the Γ-graded space of ε-derivation

- The space $\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ is an ε-Lie algebra and a $\mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A})$-module
- An inner ε-derivation on \mathbf{A}^{\bullet} is an ε-derivation \mathfrak{X} :

$$
\exists a \in \mathbf{A}^{\bullet}, \mathfrak{X}(b)=\operatorname{ad}_{a}(b)=[a, b]_{\varepsilon}
$$

We note $\operatorname{lnt}_{\varepsilon}^{\bullet}(\mathbf{A})=\left\{\operatorname{ad}_{a}, a \in \mathbf{A}^{\bullet}\right\}$ the space of inner ε-derivations on \mathbf{A}^{\bullet} It is an ε-Lie ideal and a $\mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A})$-module.

- Two short exact sequences of ε-Lie algebras and $\mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A})$-modules :

$$
\begin{gathered}
0 \longrightarrow \mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A}) \longrightarrow \mathbf{A}^{\bullet} \xrightarrow{\text { ad }} \operatorname{lnt}_{\varepsilon}^{\bullet}(\mathbf{A}) \longrightarrow 0 \\
0 \longrightarrow \operatorname{lnt}_{\varepsilon}^{\bullet}(\mathbf{A}) \longrightarrow \operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A}) \longrightarrow \operatorname{Out}_{\varepsilon}^{\bullet}(\mathbf{A}) \longrightarrow 0
\end{gathered}
$$

Differential calculus based on ϵ-derivations

- $\underline{\Omega}_{\varepsilon}^{n, k}(\mathbf{A}, \mathbf{M})$ is the space of n-linear maps ω from $\left(\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})\right)^{n}$ to \mathbf{M}^{\bullet}, such that, $\forall \mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n} \in \operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ homogeneous,

Definition $5\left(\underline{\Omega}_{\varepsilon}^{n, k}(A, M)\right)$

$$
\begin{aligned}
& \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n}\right) \in \mathbf{M}^{k+\left|\mathfrak{X}_{1}\right|+\cdots+\left|\mathfrak{X}_{n}\right|} \\
& \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n} z\right)=\omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n}\right) z, \forall z \in \mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A}) \\
& \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{i}, \mathfrak{X}_{i+1}, \ldots, \mathfrak{X}_{n}\right)=-\varepsilon\left(\left|\mathfrak{X}_{i}\right|,\left|\mathfrak{X}_{i+1}\right|\right) \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{i+1}, \mathfrak{X}_{i}, \ldots, \mathfrak{X}_{n}\right)
\end{aligned}
$$

We note $\underline{\Omega}_{\varepsilon}^{0, k}(\mathbf{A}, \mathbf{M})=\mathbf{M}^{k}$ and $\underline{\Omega}_{\varepsilon}^{\bullet, \bullet}(\mathbf{A})=\underline{\Omega}_{\varepsilon}^{\bullet \bullet \bullet}(\mathbf{A}, \mathbf{A})$ if $\mathbf{M}^{\bullet}=\mathbf{A}^{\bullet}$

Differential calculus based on ϵ-derivations

- $\underline{\Omega}_{\varepsilon}^{n, k}(\mathbf{A}, \mathbf{M})$ is the space of n-linear maps ω from $\left(\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})\right)^{n}$ to \mathbf{M}^{\bullet}, such that, $\forall \mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n} \in \operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ homogeneous,

Definition $5\left(\underline{\Omega}_{\varepsilon}^{n, k}(A, M)\right)$

```
\(\omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n}\right) \in \mathbf{M}^{k+\left|\mathfrak{x}_{1}\right|+\cdots+\left|\mathfrak{x}_{n}\right|}\),
\(\omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n} z\right)=\omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n}\right) z, \forall z \in \mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A})\)
\(\omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{i}, \mathfrak{X}_{i+1}, \ldots, \mathfrak{X}_{n}\right)=-\varepsilon\left(\left|\mathfrak{X}_{i}\right|,\left|\mathfrak{X}_{i+1}\right|\right) \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{i+1}, \mathfrak{X}_{i}, \ldots, \mathfrak{X}_{n}\right)\)
```

We note $\underline{\Omega}_{\varepsilon}^{0, k}(\mathbf{A}, \mathbf{M})=\mathbf{M}^{k}$ and $\underline{\Omega}_{\varepsilon}^{\bullet, \bullet}(\mathbf{A})=\underline{\Omega}_{\varepsilon}^{\bullet \bullet}(\mathbf{A}, \mathbf{A})$ if $\mathbf{M}^{\bullet}=\mathbf{A}^{\bullet}$

- $\underline{\Omega}_{\varepsilon}^{\bullet \bullet}(\mathbf{A})$ is a differential algebra for the product and the differential defined in the following slide

Differential calculus based on ϵ-derivations

- $\underline{\Omega}_{\varepsilon}^{n, k}(\mathbf{A}, \mathbf{M})$ is the space of n-linear maps ω from $\left(\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})\right)^{n}$ to \mathbf{M}^{\bullet}, such that, $\forall \mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n} \in \operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ homogeneous,

Definition $5\left(\underline{\Omega}_{\varepsilon}^{n, k}(A, M)\right)$

$$
\begin{aligned}
& \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n}\right) \in \mathbf{M}^{k+\left|\mathfrak{X}_{1}\right|+\cdots+\left|\mathfrak{X}_{n}\right|} \\
& \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n} z\right)=\omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n}\right) z, \forall z \in \mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A}) \\
& \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{i}, \mathfrak{X}_{i+1}, \ldots, \mathfrak{X}_{n}\right)=-\varepsilon\left(\left|\mathfrak{X}_{i}\right|,\left|\mathfrak{X}_{i+1}\right|\right) \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{i+1}, \mathfrak{X}_{i}, \ldots, \mathfrak{X}_{n}\right)
\end{aligned}
$$

We note $\underline{\Omega}_{\varepsilon}^{0, k}(\mathbf{A}, \mathbf{M})=\mathbf{M}^{k}$ and $\underline{\Omega}_{\varepsilon}^{\bullet, \bullet}(\mathbf{A})=\underline{\Omega}_{\varepsilon}^{\bullet \bullet}(\mathbf{A}, \mathbf{A})$ if $\mathbf{M}^{\bullet}=\mathbf{A}^{\bullet}$

- $\underline{\Omega}_{\varepsilon}^{\bullet \bullet}(\mathbf{A})$ is a differential algebra for the product and the differential defined in the following slide
- $\underline{\Omega}_{\varepsilon}^{\bullet \bullet \bullet}(\mathbf{A})$ is an $\widetilde{\varepsilon}$-graded algebra for the abelian group $\widetilde{\Gamma}=\mathbb{Z} \times \Gamma$ with $\widetilde{\varepsilon}((p, i),(q, j))=(-1)^{p q} \varepsilon(i, j)$

Differential calculus based on ϵ-derivations

- $\underline{\Omega}_{\varepsilon}^{n, k}(\mathbf{A}, \mathbf{M})$ is the space of n-linear maps ω from $\left(\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})\right)^{n}$ to \mathbf{M}^{\bullet}, such that, $\forall \mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n} \in \operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ homogeneous,

Definition $5\left(\underline{\Omega}_{\varepsilon}^{\mathrm{n}, \mathrm{k}}(\mathrm{A}, \mathrm{M})\right)$

$$
\begin{aligned}
& \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n}\right) \in \mathbf{M}^{k+\left|\mathfrak{X}_{1}\right|+\cdots+\left|\mathfrak{X}_{n}\right|} \\
& \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n} z\right)=\omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n}\right) z, \forall z \in \mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A}) \\
& \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{i}, \mathfrak{X}_{i+1}, \ldots, \mathfrak{X}_{n}\right)=-\varepsilon\left(\left|\mathfrak{X}_{i}\right|,\left|\mathfrak{X}_{i+1}\right|\right) \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{i+1}, \mathfrak{X}_{i}, \ldots, \mathfrak{X}_{n}\right)
\end{aligned}
$$

We note $\underline{\Omega}_{\varepsilon}^{0, k}(\mathbf{A}, \mathbf{M})=\mathbf{M}^{k}$ and $\underline{\Omega}_{\varepsilon}^{\bullet \bullet \bullet}(\mathbf{A})=\underline{\Omega}_{\varepsilon}^{\bullet \bullet}(\mathbf{A}, \mathbf{A})$ if $\mathbf{M}^{\bullet}=\mathbf{A}^{\bullet}$

- $\underline{\Omega}_{\varepsilon}^{\bullet \bullet}(\mathbf{A})$ is a differential algebra for the product and the differential defined in the following slide
- $\underline{\Omega}_{\varepsilon}^{\bullet \bullet \bullet}(\mathbf{A})$ is an $\widetilde{\varepsilon}$-graded algebra for the abelian group $\widetilde{\Gamma}=\mathbb{Z} \times \Gamma$ with $\widetilde{\varepsilon}((p, i),(q, j))=(-1)^{p q} \varepsilon(i, j)$
- d is an $\widetilde{\varepsilon}$-derivation of $\underline{\Omega}_{\varepsilon}^{\bullet \bullet \bullet}(\mathbf{A})$ of degree $(1,0)$ satisfying $\mathrm{d}^{2}=0$

Differential calculus based on ϵ-derivations

- The product is : $(\omega \cdot \eta)\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{p+q}\right)$

$$
=\frac{1}{p!q!} \sum_{\sigma \in \mathfrak{G}_{p+q}}(-1)^{|\sigma|} f_{1} \omega\left(\mathfrak{X}_{\sigma(1)}, \ldots, \mathfrak{X}_{\sigma(p)}\right) \cdot \eta\left(\mathfrak{X}_{\sigma(p+1)}, \ldots, \mathfrak{X}_{\sigma(p+q)}\right),
$$

- The differential is

$$
\begin{aligned}
& \mathrm{d} \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{p+1}\right)=\sum_{m=1}^{p+1}(-1)^{m+1} f_{2} \mathfrak{X}_{m} \omega\left(\mathfrak{X}_{1}, \ldots \stackrel{m}{n}_{\left.\ldots, \mathfrak{X}_{p+1}\right)}\right. \\
& \quad+\sum_{1 \leq m<n \leq p+1}(-1)^{m+n} f_{3} \omega\left(\left[\mathfrak{X}_{m}, \mathfrak{X}_{n}\right]_{\varepsilon}, \ldots \stackrel{m}{n}_{\ldots}^{\stackrel{n}{n}} \ldots, \mathfrak{X}_{p+1}\right)
\end{aligned}
$$

- The factors f_{i} are given by
$f_{1}=\prod_{m<n, \sigma(m)>\sigma(n)} \varepsilon\left(\left|\mathfrak{X}_{\sigma(n)}\right|,\left|\mathfrak{X}_{\sigma(m)}\right|\right) \prod_{m \leq p} \varepsilon\left(|\eta|,\left|\mathfrak{X}_{\sigma(m)}\right|\right)$
$f_{2}=\varepsilon\left(|\omega|,\left|\mathfrak{X}_{m}\right|\right) \prod_{a=1}^{m-1} \varepsilon\left(\left|\mathfrak{X}_{a}\right|,\left|\mathfrak{X}_{m}\right|\right)$
$f_{3}=\varepsilon\left(\left|\mathfrak{X}_{n}\right|,\left|\mathfrak{X}_{m}\right|\right) \prod_{a=1}^{m-1} \varepsilon\left(\left|\mathfrak{X}_{a}\right|,\left|\mathfrak{X}_{m}\right|\right) \prod_{a=1}^{n-1} \varepsilon\left(\left|\mathfrak{X}_{a}\right|,\left|\mathfrak{X}_{n}\right|\right)$
$\omega \in \underline{\Omega}_{\varepsilon}^{p,|\omega|}(\mathbf{A}), \eta \in \underline{\Omega}_{\varepsilon}^{q,|\eta|}(\mathbf{A})$, and $\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{p+q} \in \operatorname{Der}{ }_{\varepsilon}^{\bullet}(\mathbf{A})$ homogeneous

Cartan operation

- An ε-Lie subalgebra \mathfrak{g}^{\bullet} of $\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ defines canonically a Cartan operation on ($\left.\underline{\Omega}_{\varepsilon}^{\bullet \bullet \bullet}(\mathbf{A}), \mathrm{d}\right)$ by :
The inner product with $\mathfrak{X} \in \operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ is the map $i_{\mathfrak{X}}: \underline{\Omega}_{\varepsilon}^{n, k}(\mathbf{A}) \rightarrow \underline{\Omega}_{\varepsilon}^{n-1, k+|\mathfrak{X}|}(\mathbf{A})$

$$
\mathfrak{X}_{\mathfrak{X}} \omega\left(\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n-1}\right)=\varepsilon(|\mathfrak{X}|,|\omega|) \omega\left(\mathfrak{X}, \mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n-1}\right)
$$

and $i_{\mathcal{X}} \underline{\Omega}_{\varepsilon}^{0, \bullet}(\mathbf{A})=0$. $i_{\mathfrak{X}}$ is an $\widetilde{\varepsilon}$-derivation of $\underline{\Omega}_{\varepsilon}^{\bullet \bullet}(\mathbf{A})$ of degree $(-1,|\mathfrak{X}|)$.
The associated Lie derivative
$L_{\mathfrak{X}}=\left[i_{\mathfrak{X}}, \mathrm{d}\right]=i_{\mathfrak{X}} \mathrm{d}+\mathrm{d} i_{\mathfrak{X}}: \underline{\Omega}_{\varepsilon}^{n, k}(\mathbf{A}) \rightarrow \underline{\Omega}_{\varepsilon}^{n, k+|\mathfrak{X}|}(\mathbf{A})$, is an $\widetilde{\varepsilon}$-derivation of
$\underline{\Omega}_{\varepsilon}^{\bullet \bullet}(\mathbf{A})$ of degree $(0,|\mathfrak{X}|)$

Proposition 6

$$
\begin{aligned}
& {\left[i_{\mathfrak{X}}, i_{\mathfrak{Y}}\right]=i_{\mathfrak{X}} i_{\mathfrak{Y}}+\varepsilon(|\mathfrak{X}|,|\mathfrak{Y}|) i_{\mathfrak{Y}} i_{\mathfrak{X}}=0} \\
& {\left[L_{\mathfrak{X}}, i_{\mathfrak{Y}}\right]=L_{\mathfrak{X}} i_{\mathfrak{Y}}-\varepsilon(|\mathfrak{X}|,|\mathfrak{Y}|) i_{\mathfrak{Y}} L_{\mathfrak{X}}=i_{[\mathfrak{X}, \mathfrak{Y}]_{\varepsilon}}} \\
& {\left[L_{\mathfrak{X}}, \mathrm{d}\right]=L_{\mathfrak{X}} \mathrm{d}-\mathrm{d} L_{\mathfrak{X}}=0} \\
& {\left[L_{\mathfrak{X}}, L_{\mathfrak{Y}}\right]=L_{\mathfrak{X}} L_{\mathfrak{Y}}-\varepsilon(|\mathfrak{X}|,|\mathfrak{Y}|) L_{\mathfrak{Y}} L_{\mathfrak{X}}=L_{[\mathfrak{X}, \mathfrak{Y}]_{\varepsilon}}}
\end{aligned}
$$

ϵ-connection and curvature

Definition 7 (ε-connection)

An homogeneous linear map of degree $0, \nabla: \mathbf{M}^{\bullet} \rightarrow \underline{\Omega}_{\varepsilon}^{1, \bullet}(\mathbf{A}, \mathbf{M})$ is called an ε-connection if $\forall a \in \mathbf{A}^{\bullet}, \forall m \in \mathbf{M}^{\boldsymbol{\bullet}}$,

$$
\begin{equation*}
\nabla(m a)=\nabla(m) a+m d a \tag{1}
\end{equation*}
$$

- We can extend ∇ as a linear map $\nabla: \underline{\Omega}_{\varepsilon}^{p, \bullet}(\mathbf{A}, \mathbf{M}) \rightarrow \underline{\Omega}_{\varepsilon}^{p+1, \bullet}(\mathbf{A}, \mathbf{M})$

ϵ-connection and curvature

Definition 7 (ε-connection)

An homogeneous linear map of degree $0, \nabla: \mathbf{M}^{\bullet} \rightarrow \underline{\Omega}_{\varepsilon}^{1, \bullet}(\mathbf{A}, \mathbf{M})$ is called an ε-connection if $\forall a \in \mathbf{A}^{\bullet}, \forall m \in \mathbf{M}^{\bullet}$,

$$
\begin{equation*}
\nabla(m a)=\nabla(m) a+m d a \tag{1}
\end{equation*}
$$

- We can extend ∇ as a linear map $\nabla: \underline{\Omega}_{\varepsilon}^{p, \bullet}(\mathbf{A}, \mathbf{M}) \rightarrow \underline{\Omega}_{\varepsilon}^{p+1, \bullet}(\mathbf{A}, \mathbf{M})$

Definition 8 (curvature)

We define the curvature $R=\nabla^{2}$, homogeneous linear map of degree $0, \forall m \in \mathbf{M}^{\bullet}$, $\forall \mathfrak{X}, \mathfrak{Y} \in \operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ homogeneous,

$$
R(m)(\mathfrak{X}, \mathfrak{Y})=\varepsilon(|\mathfrak{X}|,|\mathfrak{Y}|) \nabla(\nabla(m)(\mathfrak{Y}))(\mathfrak{X})-\nabla(\nabla(m)(\mathfrak{X}))(\mathfrak{Y})-\nabla(m)\left([\mathfrak{X}, \mathfrak{Y}]_{\varepsilon}\right)
$$

ϵ-connection and curvature

Definition 7 (ε-connection)

An homogeneous linear map of degree $0, \nabla: \mathbf{M}^{\bullet} \rightarrow \underline{\Omega}_{\varepsilon}^{1, \bullet}(\mathbf{A}, \mathbf{M})$ is called an ε-connection if $\forall a \in \mathbf{A}^{\bullet}, \forall m \in \mathbf{M}^{\bullet}$,

$$
\begin{equation*}
\nabla(m a)=\nabla(m) a+m d a \tag{1}
\end{equation*}
$$

- We can extend ∇ as a linear map $\nabla: \underline{\Omega}_{\varepsilon}^{p, \bullet}(\mathbf{A}, \mathbf{M}) \rightarrow \underline{\Omega}_{\varepsilon}^{p+1, \bullet}(\mathbf{A}, \mathbf{M})$

Definition 8 (curvature)

We define the curvature $R=\nabla^{2}$, homogeneous linear map of degree $0, \forall m \in \mathbf{M}^{\bullet}$, $\forall \mathfrak{X}, \mathfrak{Y} \in \operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$ homogeneous,

$$
R(m)(\mathfrak{X}, \mathfrak{Y})=\varepsilon(|\mathfrak{X}|,|\mathfrak{Y}|) \nabla(\nabla(m)(\mathfrak{Y}))(\mathfrak{X})-\nabla(\nabla(m)(\mathfrak{X}))(\mathfrak{Y})-\nabla(m)\left([\mathfrak{X}, \mathfrak{Y}]_{\varepsilon}\right)
$$

Definition 9 (gauge transformations)

The gauge transformations of \mathbf{M}^{\bullet} are the automorphisms of degree 0 of \mathbf{M}^{\bullet}.
They form the gauge group $\operatorname{Aut}_{\mathbf{A}}^{0}(\mathbf{M}, \mathbf{M})$ and act on the space of its ε-connections: $\forall \Phi \in \operatorname{Aut}_{\mathbf{A}}^{0}(\mathbf{M}, \mathbf{M}), \nabla^{\Phi}=\Phi \circ \nabla \circ \phi^{-1}$ is an ε-connections

Examples

(1) Noncommutative geometry based on ϵ-derivations

(2) Examples

(3) A simple application

Examples

- ε-graded matrix algebras (see in 0811.3567 [math-ph])
- Freely finitely generated abelian groups
- Quillen connection
- Clifford algebra
- Extension to Hom algebras (0811.0400 [math.RA])

A simple application

(1) Noncommutative geometry based on ϵ-derivations
(2) Examples
(3) A simple application

- $A \mathbb{Z}_{2}$-graded algebra constructed from Moyal space
- Connection and curvature
- Gauge action

The Moyal algebra

- Deformed Moyal product defined on the space of Schwartz functions \mathcal{S} :

$$
\begin{gathered}
\left(f \star_{\theta} g\right)(x)=\frac{1}{\pi^{4} \theta^{4}} \int d^{4} y d^{4} z f(x+y) g(x+z) e^{-2 i y \Theta^{-1} z} \\
\Theta=\left(\begin{array}{cccc}
0 & -\theta & 0 \\
\theta & 0 & 0 & -\theta \\
0 & \theta & 0
\end{array}\right)
\end{gathered}
$$

- The Moyal algebra is defined by $\mathcal{M}_{\theta}=\mathcal{L} \cap \mathcal{R}$ where

$$
\begin{aligned}
\mathcal{L} & =\left\{T \in \mathcal{S}^{\prime} / f \star_{\theta} T \in \mathcal{S}, \forall f \in \mathcal{S}\right\} \\
\mathcal{R} & =\left\{T \in \mathcal{S}^{\prime} / T \star_{\theta} f \in \mathcal{S}, \forall f \in \mathcal{S}\right\}
\end{aligned}
$$

see e.g. Algebras of distributions suitable for phase-space quantum mechanics Gracia-Bondia, Varilly and ref therein

The Moyal algebra

- Deformed Moyal product defined on the space of Schwartz functions \mathcal{S} :

$$
\begin{gathered}
\left(f \star_{\theta} g\right)(x)=\frac{1}{\pi^{4} \theta^{4}} \int d^{4} y d^{4} z f(x+y) g(x+z) e^{-2 i y \theta^{-1} z} \\
\Theta=\left(\begin{array}{cccc}
0 & -\theta & 0 \\
\theta & 0 & 0 & -\theta \\
0 & \theta & 0
\end{array}\right)
\end{gathered}
$$

- The Moyal algebra is defined by $\mathcal{M}_{\theta}=\mathcal{L} \cap \mathcal{R}$ where

$$
\begin{aligned}
\mathcal{L} & =\left\{T \in \mathcal{S}^{\prime} / f \star_{\theta} T \in \mathcal{S}, \forall f \in \mathcal{S}\right\} \\
\mathcal{R} & =\left\{T \in \mathcal{S}^{\prime} / T \star_{\theta} f \in \mathcal{S}, \forall f \in \mathcal{S}\right\}
\end{aligned}
$$

see e.g. Algebras of distributions suitable for phase-space quantum mechanics Gracia-Bondia, Varilly and ref therein

- We define

$$
\gamma=1 \quad \xi_{\mu}=-\frac{1}{2} \widetilde{\chi}_{\mu} \quad \eta_{\mu \nu}=\frac{1}{2} \widetilde{\chi}_{\mu} \widetilde{x}_{\nu}=2 \xi_{\mu} \xi_{\nu}
$$

where $\widetilde{x}_{\mu}=2 \Theta_{\mu \nu}^{-1} x_{\nu}$

A simple application

A \mathbb{Z}_{2}-graded algebra constructed from Moyal space

Definition 10

Let $A^{\bullet}=\mathcal{M}_{\theta} \oplus \mathcal{M}_{\theta}$ be the \mathbb{Z}_{2}-graded complex vector space defined by the following product (whith $\alpha \in \mathbb{R}$) : $\forall \phi, \psi \in \mathbf{A}^{\bullet}$,

$$
\begin{equation*}
\phi \cdot \psi=\left(\phi_{0}, \phi_{1}\right) \cdot\left(\psi_{0}, \psi_{1}\right)=\left(\phi_{0} \star \psi_{0}+\alpha \phi_{1} \star \psi_{1}, \phi_{0} \star \psi_{1}+\phi_{1} \star \psi_{0}\right) \tag{2}
\end{equation*}
$$

The commutation factor is defined by $\varepsilon(i, j)=(-1)^{i j}$ for $i, j \in \mathbb{Z}_{2}$

A \mathbb{Z}_{2}-graded algebra constructed from Moyal space

Definition 10

Let $A^{\bullet}=\mathcal{M}_{\theta} \oplus \mathcal{M}_{\theta}$ be the \mathbb{Z}_{2}-graded complex vector space defined by the following product (whith $\alpha \in \mathbb{R}$) : $\forall \phi, \psi \in \mathbf{A}^{\bullet}$,

$$
\begin{equation*}
\phi \cdot \psi=\left(\phi_{0}, \phi_{1}\right) \cdot\left(\psi_{0}, \psi_{1}\right)=\left(\phi_{0} \star \psi_{0}+\alpha \phi_{1} \star \psi_{1}, \phi_{0} \star \psi_{1}+\phi_{1} \star \psi_{0}\right) \tag{2}
\end{equation*}
$$

The commutation factor is defined by $\varepsilon(i, j)=(-1)^{i j}$ for $i, j \in \mathbb{Z}_{2}$

- The bracket $[\phi, \psi]_{\varepsilon}=\left(\left[\phi_{0}, \psi_{0}\right]_{\star}+\alpha\left\{\phi_{1}, \psi_{1}\right\}_{\star},\left[\phi_{0}, \psi_{1}\right]_{\star}+\left[\phi_{1}, \psi_{0}\right]_{\star}\right)$
- The ε-center of \mathbf{A}^{\bullet} is $\mathcal{Z}_{\varepsilon}^{\bullet}(\mathbf{A})=\mathbb{C} \mathbb{1}=\mathbb{C} \oplus 0$ where the unit $\mathbb{1}$ is $(1,0)$
- Trace on $\mathbf{A}^{\bullet}: \operatorname{Tr}(\phi)=\operatorname{Tr}\left(\phi_{0}, \phi_{1}\right)=\int d^{4} x \phi_{0}(x)$
- ε-Lie subalgebra \mathfrak{g}^{\bullet} of $\operatorname{Der}_{\varepsilon}^{\bullet}(\mathbf{A})$:

$$
\mathfrak{g}^{\bullet}=\left\langle[(0, i \gamma), \cdot],\left[\left(i \xi_{\mu}, 0\right), \cdot\right],\left[\left(0, i \xi_{\mu}\right), \cdot\right],\left[\left(i \eta_{\mu \nu}, 0\right), \cdot\right]\right\rangle
$$

Natural generalisation of the extended algebra of derivation of Moyal (0804.3061 [hep-th])

- $「$-graded module $\mathbf{M}^{\boldsymbol{\bullet}}=\mathbf{A}^{\boldsymbol{\bullet}}$

Connection

Proposition 11

An a ε-connection ∇ on \mathbf{A}^{\bullet} and a ε-derivation was associated to a gauge potential $A_{\mathfrak{X}}$ defined by $-i A_{\mathfrak{X}}=\nabla(\mathbb{1})(\mathfrak{X})$.
The ε-connection ∇ becomes : $\forall a \in \mathbf{A}^{\bullet}, \nabla_{\mathfrak{X}} a=\mathfrak{X}(a)-i A_{\mathfrak{X}} \cdot a$ where $\nabla_{\mathfrak{X}} a=\varepsilon(|\mathfrak{X}|,|a|) \nabla(a)(\mathfrak{X})$.

$$
\begin{equation*}
F_{\mathfrak{X}, \mathfrak{Y}}=\mathfrak{X}\left(A_{\mathfrak{Y}}\right)-\varepsilon(|\mathfrak{X}|,|\mathfrak{Y}|) \mathfrak{Y}\left(A_{\mathfrak{X}}\right)-i\left[A_{\mathfrak{X}}, A_{\mathfrak{Y}}\right]_{\varepsilon}-A_{[\mathfrak{X}, \mathfrak{Y}]_{\varepsilon}} . \tag{3}
\end{equation*}
$$

- We note the gauge potentials:

$$
\begin{aligned}
\nabla(\mathbb{1})\left(\operatorname{ad}_{(0, i \gamma)}\right) & =(0,-i \varphi), & \nabla(\mathbb{1})\left(\operatorname{ad}_{\left(i \xi_{\mu}, 0\right)}\right)=\left(-i A_{\mu}^{0}, 0\right), \\
\nabla(\mathbb{1})\left(\operatorname{ad}_{\left(0, i \xi_{\mu}\right)}\right) & =\left(0,-i A_{\mu}^{1}\right), & \nabla(\mathbb{1})\left(\operatorname{ad}_{\left(i \eta_{\mu \nu}, 0\right)}\right)=\left(-i G_{\mu \nu}, 0\right) .
\end{aligned}
$$

- The covariant coordinates are :

$$
\Phi=\varphi-1, \quad \mathcal{A}_{\mu}^{0}=A_{\mu}^{0}+\frac{1}{2} \widetilde{x}_{\mu}, \quad \mathcal{A}_{\mu}^{1}=A_{\mu}^{1}+\frac{1}{2} \widetilde{x}_{\mu}, \quad \mathcal{G}_{\mu \nu}=G_{\mu \nu}-\frac{1}{2} \widetilde{x}_{\mu} \widetilde{x}_{\nu}
$$

- $\mathcal{A}_{\nu}^{1}=\mathcal{A}_{\nu}^{0}$

$$
\begin{aligned}
& F_{(0, i \gamma),(0, i \gamma)}=(2 i \alpha \varphi-2 i \alpha \varphi \star \varphi, 0) \\
& F_{\left(i \xi_{\mu}, 0\right),(0, i \gamma)}=\left(0, \partial_{\mu} \varphi-i\left[A_{\mu}, \varphi\right]_{\star}\right) \\
& F_{\left(0, i \xi_{\mu}\right),(0, i \gamma)}=\left(-i \alpha\left(\widetilde{x}_{\mu} \varphi+\left\{A_{\mu}, \varphi\right\}_{\star}\right), 0\right) \\
& F_{\left(i \eta_{\mu \nu}, 0\right),(0, i \gamma)}=\left(0,-\frac{1}{4} \widetilde{x}_{\mu} \partial_{\nu} \varphi-\frac{1}{4} \widetilde{x}_{\nu} \partial_{\mu} \varphi-i\left[G_{\mu \nu}, \varphi\right]_{\star}\right) \\
& F_{\left(i \xi_{\mu}, 0\right),\left(i \xi_{\nu}, 0\right)}=\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]_{\star}, 0\right) \\
& F_{\left(i \xi_{\mu}, 0\right),\left(0, i \xi_{\nu}\right)}=\left(0, \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]_{\star}-\Theta_{\mu \nu}^{-1} \varphi\right) \\
& F_{\left(0, i \xi_{\mu}\right),\left(0, i \xi_{\nu}\right)}=\left(-i \alpha \widetilde{x}_{\mu} A_{\nu}-i \alpha \widetilde{x}_{\nu} A_{\mu}-i \alpha\left\{A_{\mu}, A_{\nu}\right\}_{\star}-i \alpha G_{\mu \nu}, 0\right) \\
& F_{\left(i \xi_{\mu}, 0\right),\left(i \eta_{\nu \rho}, 0\right)}=\left(\partial_{\mu} G_{\nu \rho}+\widetilde{x}_{\nu} \partial_{\rho} A_{\mu}+\widetilde{x}_{\rho} \partial_{\nu} A_{\mu}-i\left[A_{\mu}, G_{\nu \rho}\right]_{\star}\right. \\
&\left.\quad+2 \Theta_{\nu \mu}^{-1} A_{\rho}+2 \Theta_{\rho \mu}^{-1} A_{\nu}, 0\right) \\
& F_{\left(0, i \xi_{\mu}\right),\left(i \eta_{\nu \rho}, 0\right)}=\left(0, \partial_{\mu} G_{\nu \rho}+\widetilde{x}_{\nu} \partial_{\rho} A_{\mu}+\widetilde{x}_{\rho} \partial_{\nu} A_{\mu}-i\left[A_{\mu}, G_{\nu \rho}\right]_{\star}\right. \\
&\left.\quad+2 \Theta_{\nu \mu}^{-1} A_{\rho}+2 \Theta_{\rho \mu}^{-1} A_{\nu}\right) \\
& F_{\left(i \eta_{\mu \nu}, 0\right),\left(i \eta_{\rho \sigma}, 0\right)}=\left(-\widetilde{x}_{\mu} \partial_{\nu} G_{\rho \sigma}-\widetilde{x}_{\nu} \partial_{\mu} G_{\rho \sigma}+\widetilde{x}_{\rho} \partial_{\sigma} G_{\mu \nu}+\widetilde{x}_{\sigma} \partial_{\rho} G_{\mu \nu}-i\left[G_{\mu \nu}, G_{\rho \sigma}\right]_{\star}\right. \\
&\left.-2 \Theta_{\mu \rho}^{-1} G_{\nu \sigma}-2 \Theta_{\nu \rho}^{-1} G_{\mu \sigma}-2 \Theta_{\mu \sigma}^{-1} G_{\nu \rho}-2 \Theta_{\nu \sigma}^{-1} G_{\mu \rho}, 0\right)
\end{aligned}
$$

Gauge action

- The action $S=\operatorname{Tr}\left(\left|F_{\mathrm{ad}_{\mathrm{d}}, \mathrm{ad}_{b}}\right|^{2}\right)$ involves
- $\mathcal{G}_{\mu \nu}=0, \Phi=0$
$\int d^{D} \times\left((1+2 \alpha) F_{\mu \nu} \star F_{\mu \nu}+\alpha^{2}\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}^{2}+\frac{8}{\theta}\left(2(D+1)(1+\alpha)+\alpha^{2}\right) \mathcal{A}_{\mu} \star \mathcal{A}_{\mu}\right)$
Gauge theory model of de Goursac, Wallet, Wulkenhaar (0703.075 [hep-th]) and Grosse, Wohlgenannt (0703.169 [hep-th])
$-\left[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right]_{\star} \rightleftarrows\left\{\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right\}_{\star}$ natural interpretation stemming from \mathbb{Z}_{2}-grading

Gauge action

- $\mathcal{G}_{\mu \nu}=0, \Phi \neq 0$

$$
\begin{aligned}
& S(\varphi)=\int d^{D} \times\left(2 \alpha\left|\partial_{\mu} \varphi-i\left[A_{\mu}, \varphi\right]_{\star}\right|^{2}+2 \alpha^{2}\left|\widetilde{x}_{\mu} \varphi+\left\{A_{\mu}, \varphi\right\}_{\star}\right|^{2}\right. \\
& \left.-4 \alpha \sqrt{\theta} \varphi \Theta_{\mu \nu}^{-1} F_{\mu \nu}+\frac{2 \alpha(D+2 \alpha)}{\theta} \varphi^{2}-\frac{8 \alpha^{2}}{\sqrt{\theta}} \varphi \star \varphi \star \varphi+4 \alpha^{2} \varphi \star \varphi \star \varphi \star \varphi\right)
\end{aligned}
$$

Grosse Wulkenhaar scalar model coupled to A_{μ} (0401.128 [hep-th]) Harmonic term : natural interpretation stemming from F^{2}
x_{μ} : canonical gauge invariant connection
φ : composante of a gauge potential

- Slavnov term $-4 \alpha \sqrt{\theta} \varphi \Theta_{\mu \nu}^{-1} F_{\mu \nu}$ (0304.141 [hep-th])

